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Abstract
Introduction. Tick abundance and the prevalence of the pathogens they carry have been increasing worldwide in the last 
decades, and is projected to increase even further. Despite the fact that problem is global, there still remain many gaps in 
the diagnosis and treatment of tick-borne diseases. The best protection from tick-borne pathogens, therefore, is prevention 
and avoidance of bites. Ticks mobility is limited so that their spatial distribution is strongly correlated with the presence of, 
especially with large mammals. In this study, the hypothesis was tested that tick abundance is higher on animal tracks in the 
forests than in adjacent habitats. This is an important issue because there are still several human habits and practices that 
can decrease the zoonoses risk. For example, during recreation in forest, people should always walk on the paths (including 
narrow animal’s tracks) instead of wading through bushes.  
Materials and method. Flagging of animal trails and near control transects were performed simultaneously. Next, collected 
ticks were counted, sexed and aged.  
Results. The abundance of ticks was almost 5-fold (Ixodes ricinus) and 3-fold (Dermacentor spp.) higher on animal trails than 
on adjacent control transects.  
Conclusions. The results obtained support the hypothesis that ticks are more abundant on pathways than in adjacent 
habitats. Most likely, the pattern emerges because large mammals, like deer, which are the most important ticks hosts, use 
forest paths to move across the landscape and frequently move along the same routes. This research sends an important 
public message that these forest trails are hotspots of disease risk and should be avoided.
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INTRODUCTION

Ticks as pathogen vectors are major ectoparasites of humans 
[1] and have a crucial influence on the epidemiology of 
zoonoses, such as Lyme disease [2, 3] and ticks-borne 
encephalitis [4], babesiosis [5] as well as numerous others 
less frequent diseases [6, 7]. Moreover, both tick abundance 
and the prevalence of pathogens the ticks carry has increased 
worldwide in the last decades, and is projected to increase even 
further [8–11]. Therefore, numerous studies have explored 
how their abundance and associated disease risk changes 
in time and over large spatial scales [12–17]. However, the 
distribution of ticks at the microhabitat scale, in conjunction 
with co-use of these habitats by humans, will define the 
disease risk observed at the landscape scale.

The mobility of ticks is limited as nymphs are able to 
move only ca. 1 m, while adults can move ca. 3.5 m [18, 19]. 

Therefore, their spatial distribution is strongly correlated 
with the presence of hosts, especially large mammals [20, 
21]. This non-random distribution is used in disease risk 
management to reduce ticks and humans co-occurrence, e.g. 
by creating ‘ticks free’ areas around houses and schools [22]. 
That concept is intensively studied as a vital component of the 
One Health conception [23, 24], i.e. sustainable management 
practices to protect humans from zoonoses. Nonetheless, 
there are still several human habits concerning practices to 
decrease zoonoses risk. For example, during recreation in 
forests, people should always keep to the paths (including 
narrow animal’s tracks) instead of wading through the 
bushes. However, since the presence of ticks is strongly 
shaped by their host activity, not all forest pathways may be 
safe, and some, in fact, may be hotspots of tick abundance at 
the microhabitat scale. Thus, this study tests the hypothesis 
that tick abundance is higher on animal tracks in the forests 
than in adjacent habitats.
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MATERIALS AND METHOD

Sampling was performed during the active season of ticks, 
March – December, in 2014–2016, at 2 geographical distant 
areas. The first location was situated in the High Tatras in the 
northern part of Slovakia (N 49.161823594, E 20.269952694), 
with an average altitude of 900 m a.s.l. The second location 
was situated in southern part of Slovakia, in Slovak Karst 
(N 48.589756604, E 20.697413282), with average altitude of 
200 m a.s.l. In both locations, 39 sites (in total) were selected 
for tick sampling which had evidence of the presence of an 
animal trail at least 100 meters long. Each trail was paired 
with a control transect that was parallel to the animal trail, 
and spaced approximately 5 m away. It was ensured that the 
control trails did not cross other animal trails, residential 
signs of animals, piles of droppings or noticeable resting 
areas of animals, and were located in the same habitats as 
animal trails. Tick populations were sampled by flagging 
questing ticks. Each flag consisted of a 1 m2 piece of white 
cotton flannel attached to a 1.2 m wooden dowel [25]. The flag 
pulled along the canopy cover, grassy vegetation, shrubs and 
leaf litter. Every 2 m the flag was examined for the presence 
of ticks, and collected if present. The flagging of animal trails 
and control transects were carried out simultaneously, but 
no samples were collected during rain or on wet vegetation. 
Fields workers were regularly swapped between treatments 
to avoid potential bias. All ticks were released back at the 
place of capture. Sampled ticks were identified to species level 
(Ixodes ricinus) or genus level (Dermacentor spp.), gender 
and developmental stage were determined.

Tests were carried out for the differences in abundance 
of ticks using zero-inflated negative binomial (ZINB), logit 
link, mixture models implemented via ‘pscl’ package [26, 27] 
in the R software [28]. Negative binomial was used, rather 
than Poisson error distribution, because preliminary analysis 
showed that the former strongly outperformed the latter in 
the goodness of fit (comparison of full models with different 
error distribution; ΔAICc = 445.47). Mixture models analyze 
the data in 2 steps, with the first one being a binomial process 
that estimates the probability of measuring a zero, while in 
the second process, counts are modeled by negative binomial 
model [29]. Thus, to limit the number of models fitted, the 
logistic part of the model was first specified, while keeping the 
count part constant (intercept only). A complete model was 
built with tick count as the response variable and following 
the independent factors: treatment (trail vs. off-trail), species 
(I. ricinus and Dermacentor spp.), developmental stage (adults 
vs. nymphs), and interaction term between treatment and 
species. The study site was included to account for nested 
data structure, all of which was retained in all candidate 
models. Next, the Akaike information criterion corrected for 
the small sample size (AICc) was used to specify the optimal 
model structure [30]. As the next step, the model that received 
the highest AICc support was used, and the count part of the 
model was specified by including different combinations of 
the same set of independent effects, as before, and evaluated 
their fit with the AICc. The model with the lowest AICc 
within the set was considered the best [30]. In the analysis, 
genders were pooled together and their summed count was 
treated as ‘adults’, because preliminary data exploration 
showed no differences in the spatial distribution of males and 
females (see Supplementary Material, Fig. 1S). The ‘MuMIn’ 
package was used for the AICc model selection process [31].

RESULTS AND DISCUSSION

During the study, 351 Ixodes ricinus and 570 Dermacentor 
spp. ticks were collected (Tab. 1).

The best model included the effects of treatment, tick 
species, developmental stage, and the interaction between 
treatment and species in both the logistic and binomial 
count par (Tab. 2a). The interaction term in the count part 
of the best model suggests that I. ricinus responded more 
strongly to the trial presence (Tab. 3, Fig. 1). However, the 
second-best model did not include the interaction term and 
received similar AICc support (ΔAICc = 1.13) [32] (Tab. 2A).

Generally, the overall abundance of ticks was almost 5-fold 
(I. ricinus) and 3-fold (Dermacentor spp.) higher on animal 
trails then on adjacent control transects (Tab. 3, Fig. 1).
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Table 1. Total number of ticks collected on animal trails and transects 
along animal trails

Ixodes ricinus Dermacentor spp.

males
fe-

males
nymphs

to-
gether

males
fe-

males
nymphs

to-
gether

animal 
trail

49 51 208 308 191 244 0 435

transect 9 12 22 43 80 55 0 135

Table 2. Model selection table. A) specification of the count part of 
the model, b) specification of the logistic part of the model. To limit 
the number of models fitted we first specified the logistic part of the 
model, while keeping the count part constant (intercept only). Next, we 
defined the count part of the model. Models are ranked according to the 
AICc value; logLik – log-likelihood; AICc – Akaike’s information criterion 
adjusted for small sample size; ΔAICc = AICci – minAICc; wi – model 
weight. × denotes interaction term

Rank Fixed effects Df logLik AICc ΔAICc wi

logistic part of the model

1
Site + Treat + Species + Stage + Treat 
× Species

15 -442.6 917.0 0 0.99

2 Site + Treat + Species + Stage 14 -449.3 928.2 11.16 0.01

3 Site + Treat + Species 13 -484.0 995.3 78.32 0

4 Site + Treat 12 -489.3 1003.7 86.72 0

5 Site 11 -493.8 1010.6 93.53 0

count part of the model

1
Site + Treat + Species + Stage + Treat 
× Species

27 -399.1 857.7 0 0.64

2 Site + Treat + Species + Stage 26 -400.9 858.8 1.13 0.36

3 Site + Treat + Species 25 -413.1 880.8 23.10 0

4 Site + Treat 24 -427.7 907.6 49.95 0

5 Site 23 -435.1 920.2 62.56 0

Table 3. Output of the count part of the model that received highest AICc 
support (see Table 1). Coefficients for study sites and for the logistic part 
of the model are omitted

Variable Regression coefficient SE

Intercept 3.78 0.52

Trail 0.98 0.33

Species (I. ricinus) -2.17 0.41

Stage (Adult) -2.02 0.43

Trail × Species (I. ricinus) 0.98 0.52
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Note: ‘Trail’ represents the difference in abundance between 
trails and adjacent transects for Dermacentor. ‘Species’ 
represents the difference in abundance between Dermacentor 
spp. I. ricinus ticks. ‘Stage’ represents the difference between 
adult and nymph abundance. The interaction term represents 
the difference in the effect of trail on I. ricinus abundance 
in comparison to Dermacentor. The coefficients represent 
changes in abundance expressed on a logarithmic scale.

These results support the hypothesis that ticks are more 
abundant on pathways than in adjacent habitats. Most likely, 
this pattern emerges because large mammals, like deer, the 
most important ticks hosts, [33,34], use forest paths to move 
across the landscape, and frequently move along the same 
routes [35].

Ticks leave the host after feeding by dropping on the 
vegetation, and molting (larvae or nymphs) or lay eggs (adult 
females) [36]. Since their dispersal range is very limited 
[18], most of them stay near the forest path, creating strong 
spatial differences in their abundance at the microhabitat 
scale. Furthermore, this study shows spatial differences 
in abundance among species and life stages. Lack of 
the Dermacentor spp. nymphs in the study sample is a 
consequence of the method of collection as nymphs of this 
species are nidicolous [37], contrary to I. ricinus nymphs 
[38]. One likely factor responsible for the different response 
of adult tick species to trail presence is different habitat 
preferences of the focal species. Dermacentor spp. prefer dry, 
open spaces, like xerophilic plant communities and open 

meadows, hence their occurrence within forests is generally 
low [39]. In contrast, I. ricinus prefers forest edges [40, 41], 
which likely contributes to its higher abundance on animal 
trails than in adjacent habitats.

CONCLUSION

The best protection from tick-borne pathogens is prevention 
[23, 42–44]. One simple but very effective practice is avoidance 
of habitats with a heavy occurrence of ticks [45]. Numerous, 
recent studies have investigated how the abundance of ticks 
varies among habitats (e.g. forests, meadows, or city parks) 
[46–48], but the crucial role of the distribution of the parasites 
inside these habitats remains largely unexplored. The 
presented study aimed at filling that gap, and we disproved 
the popular notion that hiking on animal trails can help 
lower the risk of acquiring a tick. In fact, ther research sends 
an important public message – that these forest trails are 
hotspots of disease risk and should be avoided. This fact 
should be treated as important information for implementing 
preventive medical and veterinary medicine.
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